

FACULTY OF SCIENCE & ENGINEERING

STUDENT HANDBOOK

MSc (FHEQ LEVEL 7)

MSc ELECTRONIC AND ELECTRICAL ENGINEERING (JANUARY INTAKE) DEGREE PROGRAMME

SUBJECT SPECIFIC
(PART TWO OF TWO)

MODULE AND COURSE STRUCTURE
2021/22

DISCLAIMER

The Faculty of Science and Engineering has made all reasonable efforts to ensure that the information contained within this publication is accurate and up-to-date when published but can accept no responsibility for any errors or omissions.

The Faculty of Science and Engineering reserves the right to revise, alter or discontinue degree programmes or modules and to amend regulations and procedures at any time, but every effort will be made to notify interested parties.

It should be noted that not every module listed in this handbook may be available every year, and changes may be made to the details of the modules. You are advised to contact the Faculty of Science and Engineering directly if you require further information. It is likely that the module descriptors for the September-January modules will be updated by module coordinators later in the year.

COVID-19

As the University continues to respond to the developing Covid-19 pandemic module information may be subject to change to ensure students receive the best learning experience possible. We will make every effort to engage with students where changes are necessary and any changes will be communicated to students, as soon as possible.

We are working hard to enable learning to take place in a Covid-aware environment, based on Welsh law and Welsh Government guidance. Delivery of both teaching and assessment will be 'blended' including live and self-directed activities online and oncampus.

Given the changeable situation with COVID-19 it is important that staff and students comply with the procedures that are in place to protect the health of our community. Please familiarise yourself with the <u>Student Charter</u> and follow all of the guidance in place across the University and Faculty of Science and Engineering. As a community we all need to ensure that we keep Swansea University a safe place to study and work.

TERM DATES

The 2021/22 academic year for January start programmes begins on 17th January 2022

Full term dates can be found here

IMPORTANT

Swansea University and the Faculty of Science of Engineering takes any form of **academic misconduct** very seriously. In order to maintain academic integrity and ensure that the quality of an Award from Swansea University is not diminished, it is important to ensure that all students are judged on their ability. No student should have an unfair advantage over another as a result of academic misconduct; whether this is in the form of **Plagiarism**, **Collusion** or **Commissioning**.

It is important that you are aware of the **guidelines** governing Academic Misconduct within the University/Faculty of Science and Engineering and the possible implications. The Faculty of Science and Engineering will not take intent into consideration and in relation to an allegation of academic misconduct - there can be no defence that the offence was committed unintentionally or accidentally.

Please ensure that you read the University webpages covering the topic – procedural guidance here and further information here. You should also read the Faculty Part One handbook fully, in particular the pages that concern Academic Misconduct/Academic Integrity. You should also refer to the Faculty of Science and Engineering proof-reading policy and this can be found on the Community HUB on Canvas, under Course Documents.

WELCOME

We would like to extend a very warm welcome to all students for the 2021/22 academic year.

We are looking forward to having you on campus for the new academic year. We have been busy making preparations to ensure a COVID aware environment in line with the latest Welsh Government guidelines and with your safety as our top priority.

The campus experience may still be different from an ordinary year. For example, some teaching activities will be online rather than in person, with a 'blended learning' approach.

Given the continued situation with COVID-19 it is important that staff and students comply with the procedures that are in place to protect the health of our community. Please familiarise yourself with the <u>Student Charter</u> and follow all of the guidance in place across the University and Faculty of Science and Engineering. As a community we all need to ensure that we keep Swansea University a safe place to study and work.

We would like to wish you every success with the year ahead.

Faculty of Science and Engineering		
Executive Dean and PVC	Professor Ken Meissner	
Deputy Executive Dean	Professor Johann Sienz	
Head of Operations	Mrs Ruth Bunting	
Associate Dean – Student Learning and Experience (SLE)	Professor Paul Holland	
School of Aerospace, Civil, Electrical, General and Mechanical Engineering Head of School: Professor Antonio Gil		
School Education Lead	Professor Cris Arnold	
Head of Electrical and Electronic Engineering	Professor Vincent Teng	
MSc Electrical and Electronic Engineering Coordinator	Dr Meghdad Fazeli (M.Fazeli@swansea.ac.uk)	

STUDENT SUPPORT:

The Faculty of Science and Engineering has two **Reception** areas - Engineering Central (Bay Campus) and Wallace 223c (Singleton Park Campus).

Standard Reception opening hours are Monday-Friday 9am-5pm.

The **Student Support Team** provides dedicated and professional support to all students in the Faculty of Science and Engineering. Should you require assistance, have any questions, be unsure what to do or are experiencing difficulties with your studies or in your personal life, our team can offer direct help and advice and also signpost you to further sources of support within the University. There are lots of ways to get information and contact the team:

Email: studentsupport-scienceengineering@swansea.ac.uk (Monday–Friday, 9am–5pm)

Call: +44 (0) 1792 295514 and also 01792 6062522 (Monday-Friday, 10am–12pm, 2–4pm).

Zoom: By appointment. Students can email, and if appropriate we will share a link to our Zoom calendar for students to select a date/time to meet.

The current student **webpages** also contains useful information and links to other resources:

https://myuni.swansea.ac.uk/college-of-engineering/coe-student-info/

READING LISTS:

Reading lists for each module are available on the course Canvas page, and are also accessible via http://ifindreading.swan.ac.uk/. We've removed reading lists from the 21-22 handbooks to ensure that you have access to the most up-to-date versions. Access to print material in the library may be limited due to CV-19; your reading lists will link to on-line material whenever possible. For Engineering courses, we do not expect you to purchase textbooks, unless it is a specified key text for the course.

MSc Electronic and Electrical Engineering Coordinator: Dr M Fazeli JANUARY START – PTFEG12J

Jan – June 21-22	September – Jan 22-23		
EGLM01	EGIM16		
Wide Band-gap Semiconductors	Communication Skills for Research		
10 Credits	Engineers 10 Credits		
CORE	CORE		
EGLM03	EGLM00		
Modern Control	Power Semiconductor		
Systems 10 Credits	Devices 10 Credits		
CORE	CORE		
EGLM05	EGLM02		
Advanced Power	Advanced Power Electronics and		
Systems 10 Credits	Drives 10 Credits		
CORE	CORE		
EGLM06	AT-M80		
Energy and Power Electronics	Optical Fibre		
Laboratory 10 Credits	Communications 10 Credits		
CORE	CORE		
EG-M190			
Social, Environmental and Economic context of			
Research 10 Credits			
CORE			
Research Project – July-September 21-22			
	D05		
MSc Dissertation - Electrical Engineering			
60 Credits			
CORE			
Total 180 Credits			

Optional Modules

Choose exactly 10 credits from Options in Jan-June:

AT-M49	RF and Microwaves	Jan-June 21-22	10
AT-M79	Optical Networks	Jan-June 21-22	10
EG-M47	Leadership Development	Jan-June 21-22	10
EGNM04	Nanoscale Structures and Devices	Jan-June 21-22	10
EGNM09	Micro and Nano Electro-Mechanical Systems	Jan-June 21-22	10
EG-M191	Communication Systems and Networks	Jan-June 21-22	10

And

Choose exactly 20 credits from Options in September-Jan:

EG-M125	Advanced Optoelectronic Devices	September-Jan 22-23	10
EG-M85	Strategic Project Management	September-Jan 22-23	10
EGNM01	Probing at the Nanoscale	September-Jan 22-23	10
EGTM71	Power Generation Systems	September-Jan 22-23	10
AT-M76	Radio and Optical Wireless Communications	September-Jan 22-23	10

AT-M49 RF and Microwaves

Credits: 10

Pre-requisite Modules:

Co-requisite Modules:

Lecturer(s): Prof A Mehta

Format: Lectures 24 hours

Course work lab demonstration 11 hours Own directed private study 65 hours

Contact Hours will be delivered through a blend of live activities online and on-campus, and may include, for example, lectures, seminars, practical sessions and Academic Mentoring sessions.

Delivery Method: All Programmes will employ a blended approach to delivery using the Canvas Digital Learning Platform for live and self-directed online activity, with live and self-directed on-campus activities each week. Students may also have the opportunity to engage with online versions of sessions delivered on-campus

Assessment:

Examination (75 %); Coursework (25% - April)

Module Aims: Enabling students to secure strong understanding of the current microwave and RF communication technologies, both from the theoretical and experimental point of views.

Module Content:

- Modern applications of rf and microwaves
- Transmission lines
- Antennas
- Smart Antennas
- Waves
- Components (Waveguides, RF switches and RF sources)

Intended Learning Outcomes: After completing this module you should:

- Understand the application of communication technology for various modern applications, e.g. RFIDs, Satcoms, RAY Gun, and UWB Cancer detection techniques, GPS, 60 GHz radios, etc.
- Have an in-depth understanding of transmission line theory, associated equations, smith charts and line impedance transformation.
- Have a thorough understanding and analysis of different antenna types, their characteristics and their design parameters.
- Have a detailed understanding of the operation of the smart antenna (phase array antenna) and array factor.
- Understand the propagation of electromagnetic waves via various types of mediums.
- Understand various microwave components such as waveguides, mixers, switches, circulators, couplers etc.

Assessment: Examination 1 (75%)

Coursework 1 (25%)

Assessment Description: Examination and Coursework:

Examination (75%); 2 hour examination - Answer 3 out of 4 questions

Coursework (25%): This is an individual piece of coursework. It focuses on writing a 1500 word report on the experimental investigations on single arm rectangular spiral antenna. The report should highlight the following:

- Measurement of the antenna input impedance at the frequency of 3.3 GHz
- Measurement of the reflection coefficient from 3-4 GHz
- Measurement of the radiation pattern at 3.3 GHz.
- How a VNA Works
- How the Satimo Near Field Antenna Measurement facility works

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

Moderation approach to main assessment: Second marking as sampling or moderation

Assessment Feedback: Via internet with aid of college examination feedback system. Students are also encouraged to meet the academic for any specific feedback, if required.

Failure Redemption: If rules allow - standard University provision with marks capped. Any failure redemption of this module will be by written examination only (100%).

Additional Notes: As the University continues to respond to the developing Covid-19 pandemic module information may be subject to change to ensure students receive the best learning experience possible. We will make every effort to engage with students where changes are necessary and any changes will be communicated to students, as soon as possible. Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

- Notes, worked examples and related materials for this module can be found on Canvas.
- The College of Engineering has a ZERO TOLERANCE penalty policy for late submission of all coursework and continuous assessment.

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

AT-M79 Optical Networks

Credits: 10

Pre-requisite Modules:

Co-requisite Modules:

Lecturer(s): Dr KM Ennser

Format: Lectures 20 hours; preparation for assignment 30 hours; directly private study 50 hours.

Delivery Method: All Programmes will employ a blended approach to delivery using the Canvas Digital Learning Platform for live and self-directed online activity, with live and self-directed on-campus activities each week. Students may also have the opportunity to engage with online versions of sessions delivered on-campus

A combination of lectures on campus and online teaching material.

A blended learning approach to class contact will be used in which the key concepts and readings will be introduced and understanding tested using online quizzes.

Module Aims: This module presents the essential element of modern optical networking, both in backbone and broadband access scenarios. The module evaluates WDM, the most popular, bandwidth-rich contemporary approach and also others, including optical time multiplexing and photonic packet switching. Relevant telecommunication protocol standards, client layers, and principles of networking design, network dimensioning and planning are covered. Key demonstrators and field hardened trials are presented.

Module Content:

- Client layers of optical layer.
- Network elements and topologies.
- Local, Access and Metro Networks and Data Centres: Architecture and future trends.
- Photonic Packet Switching: Optical time division multiplexing (OTDM), photonic switching node design, broadcast OTDM networks and testbeds.
- Testbed examples.

Intended Learning Outcomes: After completing the module you should be able to:

- Understand different client layers and relevant standards.
- Evaluate different WDM network elements and topologies including broadcast-and-select and wavelength routing networks.
- Understand and design of optical local, access and metro networks.
- Analyse photonic packet switching networks and time-domain optical networking approaches.
- Appraise the evolution of modern optical networks through the assessment of key network demonstrators and field implementations.

The following AHEP 3 Programme Learning outcomes at Partial CEng (Further learning) (fl) and CEng (m) are partially addressed at a threshold level by this module:

- *Ability to use fundamental knowledge to investigate new and emerging technologies including optical network evolution from opaque to all-optical network and switching paradigm, network elements and topologies, client layers of optical layers, local, access and metro networks architecture and future trends passive optical network architectures and protocols, photonic packet switching, optical circuit switching, optical burst switching networks. (EA5m, EA2fl assessed by coursework and exam)
- *Ability to apply a systematic approach to the analysis and design of passive optical network for short and extended reach links. (EA6m, EA3fl assessed by coursework and exam)
- *Ability to understand and design of optical access and metro networks it is important to consider the user perception of the performance of the network (Quality of Experience), business and regulation limitations (e.g., cost, bandwidth and transmission rate, initial investments, pay-as-you-go model and customers subscribers willingness to pay). (D1m assessed by coursework and exam)
- *Ability to understand and design of optical local, access and metro networks and key components (eg, photonic switching node design) taking into consideration the environmental, health and safety limitations (eg, high power lasers safety concerns in high dense populated urban areas), International Telecommunications Union (ITU) standards, the cost versus performance trade-offs, and regulations. The focus is on optical networking management, traffic distribution, resilience, failure and survivability. (D2m assessed by coursework and exam)
- * Ability to evaluate the power budget, estimate the maximum number of subscribers and maximum point-to-point transmission length in the design of the optical access networks. Appreciation of different protocols and multiplexing technologies availability. (D3m, D1fl assessed by coursework and exam)
- *Understanding of commercial, economic and social constraints in the deployment of fibre-to-the-home technology to provide unlimited bandwidth, applications and services to the society (ET2fl assessed by coursework and exam)
- *Understanding of more complex topics in optical networks by searching in the scientific literature and specialised books. (EP4m assessed by the oral group presentation)
- *A thorough understanding of current practice in understanding different client layers, evaluate different WDM network elements and topologies including broadcast-and-select and wavelength routing networks, understand and design of optical local, access and metro networks, analyze photonic packet switching networks and time-domain optical networking approaches. Appraise the evolution of modern optical networks through the assessment of key network demonstrators and field implementations. (EP9m, EP2fl assessed by coursework and exam)

Assessment: Examination (60%)

Group Work - Presentation (20%)

Assignment 1 (10%) Assignment 2 (10%) **Assessment Description:** The module is based on Examination (60%) and Continuous Assessments (40%).

The Group Work - Presentation (20%) is a group activity and it consists of delivering a short report and a presentation on a given topic on optical networking. The individual assignments consists of two online quizzes (each 10%)

Zero Tolerance Penalty for late submission of Continuous Assessment. Late submissions are given Zero (0%) mark.

• This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

Moderation approach to main assessment: Universal second marking as check or audit

Assessment Feedback: The feedback is provided during lectures whenever possible or during office opening hours. **Failure Redemption:** If rules allow - standard University provision with marks capped. Failure Redemption of this module will be by Examination only (100%).

Additional Notes: As the University continues to respond to the developing Covid-19 pandemic module information may be subject to change to ensure students receive the best learning experience possible. We will make every effort to engage with students where changes are necessary and any changes will be communicated to students, as soon as possible. Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

- AVAILABLE TO to Visiting and Exchange students.
- Notes, worked examples and past papers for this module can be found on Canvas.
- The College of Engineering has a ZERO TOLERANCE penalty policy for late submission of all coursework and continuous assessment.
- This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

AT-M80 Optical Fibre Communications

Credits: 10

Pre-requisite Modules:

Co-requisite Modules:

Lecturer(s): Dr KM Ennser

Format: On-demand lecture materials: 20 hours;

Live Discussion & Examples Classes: 10 hours;

Directed Private Study: 70 hours

Contact Hours will be delivered through a blend of live activities online and on-campus, and may include, for example, lectures, seminars, practical sessions and Academic Mentoring sessions.

Delivery Method: All Programmes will employ a blended approach to delivery using the Canvas Digital Learning Platform for live and self-directed online activity, with live and self-directed on-campus activities each week. Students may also have the opportunity to engage with online versions of sessions delivered on-campus

A blended learning approach to class contact will be used in which the key concepts and readings will be introduced and understanding tested using online quizzes.

The live classes will focus on discussions and examples classes (one hour per week). Live teaching sessions will be reinforced by making worked solutions available after class.

Each week will require around 2-3 hours of student engagement to review all the on-demand materials, complete the formative assessments and engage in class discussions.

Module Aims: This module is devoted to the technology underlying optical fibre communication systems. It covers the fundamental properties of optical fibres and key components, and the principles of operation of systems including WDM based high capacity transport networks. The network architecture designs and performance metrics are examined. Modern topics are introduced such as advanced modulation formats, coherent communications, spectrum efficiency and Shannon limit capacity.

Module Content:

- Introduction to optical fibre technology
- Enabling technologies: Laser sources and filters, couplers, isolators, circulators, optical multiplexers, optical amplifiers, dispersion compensators.
- Transmission systems: crosstalk, dispersion, fibre nonlinearities, noise and system sensitivity, link power budget, repeater spacing.
- Wavelength division multiplexing (WDM) systems and key components.
- WDM amplifier and system design, coherent detection and polarisation multiplexing.

Intended Learning Outcomes: After completing this module you should be able to:

- * Understand the fundamentals of optical fibre technology and their implications in optical fibre communications
- * Appraise key components and their technologies that enable modern optical networks
- * Design optical transmission systems for different architecture scenarios
- * Evaluate transmission performance and apply quantitative and qualitative metrics

The following AHEP 3 Programme Learning outcomes at Partial CEng (Further learning) (fl) and CEng (m) are partially addressed at a threshold level by this module:

- * Ability to use fundamental knowledge to investigate new and emerging technologies including optical communications WDM channels digital optical signals and systems, optical propagation and waveguides (fibres), modulation and coding techniques of optical signal including phase and multilevel, organisation and operation of optical communications networks, optical network architectures and noise in amplified optical communications systems. (EA5m, EA2fl assessed by coursework and exam)
- *Ability to apply a systematic approach to the analysis and design of optical communication links taking into account technical constraints such as crosstalk, dispersion, fibre nonlinearities and noises. (EA6m, EA3fl, assessed by coursework and exam)
- * Ability to apply a systematic approach to the analysis and design of optical communication links taking into account health, safety and environmental issues, the cost versus performance trade-off, International Telecommunications Union (ITU) standards and social-economical issues. (D2m assessed by coursework and exam)
- * Ability to apply several quantitative and qualitative metrics (eg, eye-diagram, Q factor, bit error rate, optical signal-to-noise ratio, amplifier noise figure) in the analysis of network performance and design. (D3m, D1fl, assessed by coursework and exam)
- *Appreciation of technology choices based on cost, capacity and demand in the context of optical fibre telecommunication. Understanding the different requirements in local access, metropolitan area, terrestrial high capacity networks and submarine links. (ET2m, ET2fl, assessed by coursework and exam).
- * A thorough understanding of current practice in the key components and their configurations in high speed optical (WDM) systems including different fibre types, amplifiers, multiplexers and compensators. (EP9m, EP2fl, assessed by coursework and exam)
- *Cost and commercial constraints on system design, e.g. why amplifier spacing is maximised, access network architecture. Commercial long-distance system design and installation are presented and discussed the requirements and constraints, such as the use of solar panels to feed equipment in a desert area, positioning of the nodes due to geographic limitations (EP10m, EP2fl, assessed by coursework and exam)

Assessment: Exam - open book (70%)

Coursework 1 (6%)

Coursework 2 (6%)

Coursework 3 (6%)

Coursework 5 (0%)

Coursework 4 (6%)

Coursework 5 (6%)

Assessment Description: The module is assessed by an exam (70%) and five pieces of coursework (30%). The pieces of coursework are a mix of written assignments and online quizzes.

Zero tolerance for a late submission.

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

Moderation approach to main assessment: Universal second marking as check or audit

Assessment Feedback: The students receive feedback on the coursework during lectures and via Canvas.

Failure Redemption: If rules allow - standard University provision with marks capped. Failure Redemption will be by Examination.

Additional Notes: As the University continues to respond to the developing Covid-19 pandemic module information may be subject to change to ensure students receive the best learning experience possible. We will make every effort to engage with students where changes are necessary and any changes will be communicated to students, as soon as possible. Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

The College of Engineering has a ZERO TOLERANCE penalty policy for late submission of coursework and continuous assessment.

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

EG-D05 MSc Dissertation - Electrical Engineering

Credits: 60

Pre-requisite Modules:

Co-requisite Modules: Lecturer(s): Dr M Fazeli

Format:

Typically 1 hour per week i.e 10-15 hrs total contact time. Each student is to be supervised in accordance with the University's Policy on Supervision, with a minimum of three meetings held. A careful record should be kept, agreed between supervisor and student, of all such formal meetings, including dates, action agreed and deadlines set.

Delivery Method: The module is delivered primarily as an individual research project. The student is expected to liaise with the supervisor on a regular basis, with a minimum University requirement of three formal meetings for full-time students. In the case of part-time students it is recommended that a minimum of four meetings are held. Ideally, contact should be more regular, with at least one meeting a week to discuss the development and progress of the project. Depending on the project the student would be expected to carry out this research individually and to complete the necessary risk assessments and training required to work on an industrial site or within laboratory facilities of the University.

Module Aims: The module aims to develop fundamental research skills. It comprises the development of supervised research work leading to a dissertation in the field of the Master's degree programme. The specific research topic will be chosen by the student following consultation with academic staff.

Module Content: Study for the dissertation, which may be based on practical, industrial, or literature work, or any combination of these, is primarily carried out over a period of about 12 weeks, with the dissertation being submitted at the end of September. Preparatory work on the dissertation may take place during Part One of the programme but students will only be permitted to submit their dissertation following successful completion of Part One.

In conducting the research project and dissertation the student will be exposed to all aspects of modern information retrieval processes, the organisation and resourcing of research and the organising and presentation of experimental data. The student must make inferences on conclusions, based on the evidence provided and supported by the research work. Furthermore they must assess the significance of this work in relation to the field and make suggestions about how further work could improve or clarify the research problem. The results of the project will be disseminated in a substantial dissertation demonstrating the student's ability to research a subject in depth.

The student will meet regularly with the supervisor to ensure that the project is well developed and organised. Progress will be monitored.

Intended Learning Outcomes: On completion of this module, students should have the ability to:

- Investigate a research topic in detail;
- Formulate research aims;
- Devise and plan a research strategy to fulfil the aims;
- Carry out research work undertake a literature search, a laboratory based or computer based investigation or a combination of these;
- Gather, organize and use evidence, data and information from a variety of primary and secondary sources;
- Critically analyse information;
- Make conclusions supported by the work and identify their relevance to the broader research area;
- Resolve or refine a research problem, with reasoned suggestions about how to improve future research efforts in the field;

and

• Produce a report (dissertation), with the findings presented in a well organised and reasoned manner.

Assessment: Report (100%)

Assessment Description: The research project and dissertation forms Part Two of the Masters degree.

Students should refer to:

https://www.swansea.ac.uk/academic-services/academic-guide/postgraduate-taught-awards-regulations/standard-taught-masters/

In particular, section 14 will provide further Information about dissertation preparation and submission.

The word limit is 20,000. This is for the main text and does not include appendices (if any), essential footnotes, introductory parts and statements or the bibliography and index.

Each student is to submit an electronic copy of their dissertation through the Turnitin link on Canvas. The online system will automatically check the similarity of the report. The dissertation must contain:

- A statement that it is being submitted in partial fulfilment of the requirements for the degree;
- A summary of the dissertation not exceeding 300 words in length;
- A statement, signed by you, showing to what extent the work submitted is the result of your own investigation. Acknowledgement of other sources shall be made by footnotes giving explicit references. A full bibliography should be appended to the work;
- A declaration, signed by you, to certify that the work has not already been accepted in substance for any degree, and is not being concurrently submitted in candidature for any degree; and
- A signed statement regarding availability of the thesis.

The dissertation is marked by the supervisor and another member of staff and sent to an External Examiner for moderation. An Internal Exam Board is then held to confirm the mark. Finally, all marks are ratified at the University Postgraduate Taught Examination Board.

Deadlines as follows:

MSc Electrical Engineering (without resits) - September 30th

MSc Electrical Engineering (with resits) - December 15th

Moderation approach to main assessment: Universal double-blind marking

Assessment Feedback: Informal feedback will be given during regular meetings with supervisors. The supervisor will also provide an assessment of the project drafting skills during the planning of the dissertation. Work will be returned according to specified deadlines and accompanied by constructive comment.

A Feedback session will be given to any student who fails their dissertation and is permitted by the Award Board to resubmit their work.

Failure Redemption: Candidates who fail the dissertation are given an opportunity to resubmit the dissertation within 3 months of the result of the examination if a full-time student or 6 months for part-time students. Such students will be given one formal feedback session, including written feedback on the reasons for failure, immediately following confirmation of the result by the University Postgraduate Taught Examination Board. The opportunity to resubmit will only be offered to students who submit a dissertation and are awarded a fail. Those candidates who do not submit a dissertation will not be offered a resubmission opportunity.

Additional Notes: As the University continues to respond to the developing Covid-19 pandemic module information may be subject to change to ensure students receive the best learning experience possible. We will make every effort to engage with students where changes are necessary and any changes will be communicated to students, as soon as possible. Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

The College of Engineering has a ZERO TOLERANCE penalty policy for late submission of all coursework and continuous assessment.

If an extension is deemed appropriate a Postgraduate Taught Masters 'Application for Extension to the Submission Deadline/ Period of Candidature' Form will need to be submitted as follows:

- 30 September deadline for Part Two students (non-resit students)
- 15 December– deadline for Part Two Students (students who had resits)

EG-M190 Social, environmental and economic context of research

Credits: 10

Pre-requisite Modules: Co-requisite Modules:

Lecturer(s): Dr N Wint

Format:

20 hours lecture and workshop time

Contact Hours will be delivered through a blend of live activities online and on-campus, and may include, for example, lectures, seminars, practical sessions and Academic Mentoring sessions.

Delivery Method: All Programmes will employ a blended approach to delivery using the Canvas Digital Learning Platform for live and self-directed online activity, with live and self-directed on-campus activities each week. Students may also have the opportunity to engage with online versions of sessions delivered on-campus

Lecture and workshops

Module Aims: Engineering interventions interact with and shape society, the environment and the economy. Research engineers have a responsibility to explore the potential wider impact of their engineering interventions and processes beyond the technical domain.

This could take the form of an aerospace engineer confronting the fact that components for an essential control system use elements sourced from conflict zones, or it could be a civil engineer using limited financial resources to decide which of several in-need communities benefit from infrastructure upgrades and which do not. There are often no simple answers or perfect solutions to engineering projects which operate within their own cultural and financial constraints. A holistic and sustainable engineering approach is one that characterises potential impacts as fully as possible, so that engineering judgement is applied using this insight.

This module will introduce both quantitative and qualitative research methods, showing how different methodologies are appropriate when targeting various objectives. While quantitative approaches are necessary to determine product safety, not all important factors can be reduced to a numeric quantity and a wider toolbox of techniques is required when engaging with intangible factors. Qualitative approaches can a better way of understanding how end-users appreciate or interact with the end product or process, which in turn may dictate success. Ethical issues concerning negative impacts on environment or society may raise questions of value, duty or morality. This requires the application of moral reasoning rather than scientific reasoning.

Through the introduction of research methods and techniques to explore and characterise wider impacts, this module will equip students with the skills and background research needed to embark on their dissertation research project.

Module Content: 1. Exploring and evaluating sources of knowledge, deductive and inductive approaches to knowledge creation

- 2. Quantitative and qualitative approaches, validity and reliability
- 3. Agency and positionality in decision making
- 4. Root-cause analysis
- 4. Frameworks for social impact
- 5. Frameworks for environmental impact
- 6. Frameworks for economic impact

Intended Learning Outcomes: Technical Outcomes

By the end of this module students should be able to:

Knowledge of the stages of a research project and how to select appropriate research methods.

Accreditation Outcomes (AHEP)

Awareness of the need for a high level of professional and ethical conduct in engineering (EL8M)

Awareness that engineers need to take account of the commercial and social contexts in which they operate (EL9M)

Awareness that engineering activities should promote sustainable development (EL11M)

Assessment: Coursework 1 (30%)

Coursework 2 (30%)

Coursework 3 (40%)

Assessment Description: Assessment One: A critique evaluating either a qualitative or quantitative research framework or methodology on a contemporary sustainability topic in the discipline.

Assessment Two: A reflection based on a role-play scenario of an ethical dilemma.

Assessment Three: An individual report and presentation in the style of a grant application that relates the social, environmental and economic impact of the proposed dissertation research topic.

Coursework Reassessment Instrument: Additional coursework

Moderation approach to main assessment: Universal second marking as check or audit

Assessment Feedback: In class feedback.

Feedback on Turnitin

Failure Redemption: Resubmission of individually assessed coursework in the summer worth 100%.

Additional Notes: As the University continues to respond to the developing Covid-19 pandemic module information may be subject to change to ensure students receive the best learning experience possible. We will make every effort to engage with students where changes are necessary and any changes will be communicated to students, as soon as possible. Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

EG-M191 Communication Systems and Networks

Credits: 10

Pre-requisite Modules:

Co-requisite Modules: Lecturer(s): Dr JW Jones

Format: Lectures 20 hours

Directed private study 80 hours

Contact Hours will be delivered through a blend of live activities online and on-campus, and may include, for example, lectures, seminars, practical sessions and Academic Mentoring sessions.

Delivery Method: All Programmes will employ a blended approach to delivery using the Canvas Digital Learning Platform for live and self-directed online activity, with live and self-directed on-campus activities each week. Students may also have the opportunity to engage with online versions of sessions delivered on-campus

Coursework 25% as 5 Canvas test, each carrying 5 marks.

Standard 75% exam to answer 3 out of 4 questions.

Lectures: 20 hours

Directed private study: 80 hours

Module Aims: The principles of the Internet are explained including protocols, services and functions of its 6 out of 7 OSI layers from the application layer down to the link layer. Emphasis is on understanding the TCP/IP protocol stack. Such knowledge of the Internet is then extended to cover the principles of wireless and mobile networks, multimedia networking, security in computer networks, and telecommunication networks management.

Module Content: The principles of the Internet are explained including the protocols, services and functions of its 6 out of 7 OSI layers from the application layer down to the link layer. Emphasis is on understanding of the TCP/IP protocol stack. Such knowledge of the Internet is then extended to cover principles and problems of wireless and mobile networks, multimedia networking, security in computer networks, and telecommunication networks management.

Intended Learning Outcomes: After completing this module you should be able to:

- Understand how the Internet works and what are its components.
- Understand what protocols are employed in the Internet, and their operations, functions and services provided.
- Understand the important issues in the current developments of the Internet.
- Understand the technical literature about the Internet.

Assessment: Examination 1 (75%) Coursework 1 (25%)

Assessment Description: The coursework 25% is assessed via 5 individual tests on Canvas.

The standard exam 75% has the choice of 3 out of 4 questions.

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

Moderation approach to main assessment: Universal second marking as check or audit

Assessment Feedback: Continuous feedback during lectures and by Canvas.

Failure Redemption: If rules allow - standard University provision with marks capped. Failure Redemption will be by 100% Examination

Additional Notes: As the University continues to respond to the developing Covid-19 pandemic module information may be subject to change to ensure students receive the best learning experience possible. We will make every effort to engage with students where changes are necessary and any changes will be communicated to students, as soon as possible. Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

- AVAILABLE TO Visiting and Exchange students.
- The College of Engineering has a ZERO TOLERANCE penalty policy for late submission of all coursework and continuous assessment.
- Notes, worked examples and past exam papers for this module can be found on Canvas.
- This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

EG-M47 Business Leadership for Engineers

Credits: 10

Pre-requisite Modules:

Co-requisite Modules:
Lecturer(s): Dr V Samaras

Format: Lectures/Workshops - 22 hours

Open door tutorials/workshops - 8 hours

Directed private study 70 hours

Contact Hours will be delivered through a blend of live activities online and on-campus, and may include, for example, lectures, seminars, practical sessions and Academic Mentoring sessions.

Delivery Method: All Programmes will employ a blended approach to delivery using the Canvas Digital Learning Platform for live and self-directed online activity, with live and self-directed on-campus activities each week. Students may also have the opportunity to engage with online versions of sessions delivered on-campus

Combination of interactive lectures/workshops/case studies and self-study.

Module Aims: At the end of this course students will be able to recognise and understand key characteristics of leadership as well as a wide range of strategic business skills, ideas and theories with emphasis on innovation and "entrepreneurial thinking" which is essential for the current multidisciplinary engineering environment. The course delivery integrates practical project work and academic rigour.

Module Content: Workshop 1 – Introduction & Leadership Part 1

Workshop 2 – Leadership Part 2

Workshop 3 – Team Formation, Development and Communication

Workshop 4 - Entrepreneurial Thinking

Workshop 5 – Change Management

Workshop 6 – Strategic Management

Workshop 7 - Innovation and Business Thinking, Group Assignment Part 1

Workshop 8 – Innovation and Business Thinking, Group Assignment Part 2

Workshop 9 – Group Assignment Workshop

Workshop 10 – Group Assignment Workshop

Intended Learning Outcomes:

Technical Outcomes

On successful completion of this module students will be expected, at threshold level, to be:

- Demonstrate an understanding of current leadership issues. Critically appraise theories and approaches to leadership and at the same time reflect on personal leadership aspects.
- Knowledge to assess the basic factors that must be considered for a business formation. Use of basic level strategy and innovation methods in order for an organisation to gain competitive advantage. Critically evaluate the rationale for utilising methods for idea generation/innovation.
- Have awareness of theoretical perspectives and approaches to change management in organisational environments. Synthesise the relationship between the external context of an organisation and its internal context and their impact on its strategic direction.
- Demonstrate and appraise, entrepreneurial way of working, team development and communication skills

Accreditation Outcomes (AHEP)

MEng:

- Investigate and define the problem, identifying any constraints including environmental and sustainability limitations; ethical, health, safety, security and risk issues; intellectual property; codes of practice and standards (D2)
- Demonstrate the ability to generate an innovative design for products, systems, components or processes to fulfil new needs (D8m)
- Understanding of the key drivers for business success, including innovation, calculated commercial risks and customer satisfaction (EL7m)
- Plan self-learning and improve performance, as the foundation for lifelong learning/CPD (G2)
- Monitor and adjust a personal programme of work on an on-going basis (G3)
- Exercise initiative and personal responsibility, which may be as a team member or leader (G4)

MSc:

- Awareness that engineering activities should promote sustainable development and ability to apply quantitative techniques where appropriate (EL11M)
- Plan self-learning and improve performance, as the foundation for lifelong learning/CPD (G2)
- Monitor and adjust a personal programme of work on an on-going basis (G3)
- Exercise initiative and personal responsibility, which may be as a team member or leader (G4)

Assessment: Group Work - Coursework (80%)

Coursework 1 (20%)

Assessment Description: The group (5/6) assignment will require application of the "key skills" and innovation development tools to generate solutions for real-world scenarios – report (40 pages) and development of Business Canvas.

The individual assignment will focus on leadership, its main characteristics and entrepreneurial thinking.

This module is assessed by a combination of group-based and individual assignments. In order for the individual assessment marks to count, you must achieve at least 40% in the group-based assignment. If you achieve less than 40% in the group-based assignment, then the module mark will be just the group-based assignment mark.

Moderation approach to main assessment: Partial second marking

Assessment Feedback:

Continuous group feedback on "out-comes" of workshops, after submission of coursework 1 at request during opentutorials.

Failure Redemption:

Exam resits according to University regulations.

100% coursework.

Additional Notes: As the University continues to respond to the developing Covid-19 pandemic module information may be subject to change to ensure students receive the best learning experience possible. We will make every effort to engage with students where changes are necessary and any changes will be communicated to students, as soon as possible. Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

The College of Engineering has a ZERO TOLERANCE penalty policy for late submission of all coursework and continuous assessment

Related assignments are used to assess this module.

This module is assessed by a combination of group-based and individual assignments. In order for the individual assessment marks to count, you must achieve at least 40% in the group-based assignment. If you achieve less than 40% in the group-based assignment, then the module mark will be just the group-based assignment mark.

EGLM01 Wide band-gap Semiconductors

Credits: 10

Pre-requisite Modules:

Co-requisite Modules:

Lecturer(s): Dr TGG Maffeis, Prof OJ Guy

Format: 23 h lecture/on demand

2 h pc lab

55 hours private study

20 hours assessment preparation

Delivery Method: Lecture either online or face to face, and PC lab based module.

Assessment: 80% final exam, 20% continual assessment (2x10%).

Module Aims: State-of-the-art wide band gap semiconductor materials and technology will be considered with emphasis on diamond, silicon carbide, gallium nitride and metal oxides. The course will cover everything from materials growth through device processing technology, to devices and applications. Current commercial devices and anticipated devices will be highlighted and discussed. The semiconductor physics needed for devices simulation and an introduction to device simulation will be covered. Metal oxide wide band gap semiconductors and their applications in renewable energy generation will be discussed.

Module Content:

- Introduction to wide band-gap materials: structure and material properties of diamond, silicon carbide & gallium nitride.
- Materials Growth.
- Electronic properties and applications.
- Basic requirements of power devices.
- Types of wide bandgap devices.
- Diodes: Schottky diodes & PiN diodes.
- Field Effect Transistors (FETs): MOSFETs, MESFETs.
- Device processing technology: Material analysis, Contact formation, Implantation, Dielectrics, Etching.
- Semiconductor physics background.
- Device testing & characterisation; State of the art device technology.
- Electronic materials for renewable energy generation.
- Solar power and photo-voltaics.

Intended Learning Outcomes: Technical outcomes:

- A detailed knowledge and comprehensive understanding of wide band gap materials including the techniques for the design, fabrication and characterisation of devices
- A comprehensive understanding of the semiconductor physics governing device behaviour
- A critical awareness of the pros and cons of novel wide band gap materials.
- An ability to identify the key differences between simulation and experiment
- How to design and fabricate devices.

Accreditation outcomes (AHEP):

- A comprehensive understanding of the relevant scientific principles of the specialisation. (SM1fl)
- A critical awareness of current problems and/or new insights most of which is at, or informed by, the forefront of the specialisation. (SM2fl)
- Ability to use fundamental knowledge to investigate new and emerging technologies. (EA2fl)
- Knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations. (D2fl)
- Advanced level knowledge and understanding of a wide range of engineering materials and components. (EP1fl)
- A thorough understanding of current practice and its limitations, and some appreciation of likely new developments. (EP2fl)

Assessment: Exam - One day/Take home (80%)

Coursework 1 (10%) Oral Presentation (10%)

Assessment Description: Examination: one day take home exam (80%), exercise sheet (10%) and oral presentation (10%)

Course work components:

Coursework 1: (Prof. Guy) Problem sheet (exam type questions): Assessment in April - worth 10%. This is an individual piece of coursework.

Groupwork Coursework: (Prof. Guy) Oral presentations - PowerPoint presentations given by small groups on course. related topics: Assessment in April - worth 10%. This is an individual piece of coursework.

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

Moderation approach to main assessment: Universal second marking as check or audit

Assessment Feedback: - Written feedback on formal exam.

- Oral feedback on CA.

Failure Redemption: If rules allow - standard University provisions with marks capped. Any re-examination of this module will be by written examination only (100%).

Additional Notes: As the University continues to respond to the developing Covid-19 pandemic module information may be subject to change to ensure students receive the best learning experience possible. We will make every effort to engage with students where changes are necessary and any changes will be communicated to students, as soon as possible. Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

- There is a zero tolerance towards late submission of coursework.
- Advanced semiconductor materials like diamond, silicon carbide and gallium nitrate are necessary to increase energy efficiency of electronic devices to reduce carbon emissions. These new materials are expected to replace silicon in aerospace, energy and automotive (hybrid electric vehicles) sectors in the near future.
- This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

EGLM03 Modern Control Systems

Credits: 10

Pre-requisite Modules:

Co-requisite Modules:

Lecturer(s): Dr CP Jobling

Format: Live study: examples and problem solving: 20 hours;

Support for modelling and design exercises: 10 hours;

Delivery Method: A blended learning approach to class contact will be used in which the key concepts and readings will be introduced

and understanding tested using on-demand readings, short lectures and concept reinforcement quizzes before each live class event.

This leaves time to practice the mathematical techniques that are causing the most difficulties during the class contact time (two hours per week).

Live teaching sessions will be reinforced by making worked solutions available after class.

Each week will require around 2-3 hours of student engagement to review all the on-demand materials, complete the formative assessments and engage in class discussions.

An online textbook will be available and OneNote Class Notebook will be used as a class notes and handouts delivery platform, shared whiteboard and host for discussion and worked examples. In addition, there will be PC lab-based laboratory sessions used to introduce MATLAB, the Control System Toolbox and modelling and simulation in Simulink. A modelling exercise (performed in pair) and a design exercise (performed in groups of 4-5) will provide hands-on experience of the application of the design approaches covered in class. Provision will be made to ensure that the practical exercises can be completed even if social distancing is in place. This will be supported by around 10 hours of lab support - in class or via Zoom.

The course will be designed "online first" so that the learning outcomes will be achieved even if completely online delivery is needed. This can easily be adjusted to adapt to a blended delivery with variable amounts of on-campus teaching.

Module Aims: This module introduces ideas in modern control systems and their applications.

Module Content: This module will be focused on the study of a particular control problem:

- Modelling: single-input single-output (SISO) systems, revision of transfer functions, state-space modelling, nonlinear systems, multiple-input-multiple-output (MIMO) systems.
- Simulation: simulation as a design tool, continuous systems simulation, discrete event systems, simulation of digital systems, simulation of mixed continuous and discrete systems.
- Design: Control system performance specification and achievement of performance specification by dynamic compensation.
- Digital systems and the z-transform. Digital compensation: digital to continuous equivalence, direct digital design.
- State-space methods: modelling, transformations, pole-placement methods of control, construction and use of observers. The Linear Ouadratic Regulator.
- Applications (study for project work): motor drives, mechatronics, aerospace flight control, process monitoring and control.

Intended Learning Outcomes: Technical Outcomes

At the end of the course you should be able to:

- Model a system in the electrical engineering domain and run simulations.
- Analyse the linearized models for such systems and devise a control strategy based on conventional or state-space methods.
- Implement such control systems as digital controllers.

The following AHEP 3 Programme Learning outcomes at C.Eng (m) and Partial C.Eng by Further Learning (fl) are partially addressed by this module:

- Science and Mathematics: SM1m, SM3m, and SM3fl are addressed by the advanced study, modeling, and simulation of dynamic systems (electrical, mechanical, electromechanical) with feedback and dynamic compensation. SM2m, SM5m, and SM1fl are addressed in the study and application of matrix methods, complex numbers, Laplace transforms, and Z-transforms.
- Engineering analysis; aspects of the learning outcomes (EA2m, EA3m, and EA6m; EA1fl) are addressed.
- Design: experience related to dealing with incomplete information (D3m and D1fl); comprehensive knowledge of design processes and methodologies and the ability to apply them (D7m and D2fl); and demonstration of the ability to innovate (D8m and D3fl)
- Engineering Practice: Team Work (EP11m and EP4fl)

The Science and Mathematics learning outcomes are partially assessed via the end-of-module assessment (exam or open-book exam). The Engineering Analysis, Design, and Engineering Practice are partially assessed via the modeling exercise (done in pairs) and the group design exercise.

Assessment: Examination 1 (70%)

Coursework 1 (10%)

Coursework 2 (20%)

Assessment Description:

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

There are three assignments for this course:

- * Coursework 1 is a Simulink Modelling Exercise to be done in pairs. 10% of the marks will be for this component.
- * Coursework 2 is a Control Systems Design Exercise to be tackled in groups of 4-5 using Matlab, the Control Systems, Toolbox and Simulink assessed by the submission of an executive summary report. 20% of the marks will be for this component.

The June Examination will be a parameterized personalized paper consisting of one compulsory question and 2 questions from the remaining 3. There will be 25 marks per question. Questions 2-4 will contain an open-ended element (5 marks) requiring a demonstration of design thinking. If an alternative assessment is required, this paper will be delivered as an open book examination and all questions will need to be answered.

The exam is worth 70% of the module marks.

Moderation approach to main assessment: Universal second marking as check or audit

Assessment Feedback: In-class feedback is used throughout the course both with audience response systems and PostIt notes for queries and questions. There is also a discussion board on Canvas and in Teams that can be used to elicit information from the lecturer. Feedback on the modeling exercise is done using video screencasting supported by the Rubric Tool and the individual feedback feature of the Canvas SpeedGrader. Feedback on the Group Design Exercise is via Canvas and makes use of the rubric tool and the SpeedGrader individual feedback feature. Feedback on the examination is via the standard engineering examination feedback form which will be posted on Canvas. The Canvas announcement and discussion tools are used for general feedback on all aspects of the formal and informal feedback for the module.

Failure Redemption: If permitted within the regulations, a 100% resit examination will be offered to students.

Additional Notes: As the University continues to respond to the developing Covid-19 pandemic module information may be subject to change to ensure students receive the best learning experience possible. We will make every effort to engage with students where changes are necessary and any changes will be communicated to students, as soon as possible. Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

- AVAILABLE TO visiting and exchange students.
- This module makes full use of the e-learning support tools provided by Canvas, Teams and the OneNote Class Notebook.
- The College of Engineering has a ZERO TOLERANCE penalty policy for late submission of coursework and continuous assessment.

EGLM05 Advanced Power Systems

Credits: 10

Pre-requisite Modules: EG 241; EG 342

Co-requisite Modules: Lecturer(s): Dr M Fazeli

Format: Lecture 20-22 Hours

Example 4-6 Hours Private Study 72 Hours

Contact Hours will be delivered through a blend of live activities online and on-campus, and may include, for example, lectures, seminars, practical sessions and Academic Mentoring sessions.

Delivery Method: All Programmes will employ a blended approach to delivery using the Canvas Digital Learning Platform for live and self-directed online activity, with live and self-directed on-campus activities each week. Students may also have the opportunity to engage with online versions of sessions delivered on-campus

Classroom sessions (lectures, interactive discussions and examples classes) 100% examination.

Module Aims: This module will study Power Networks control including active power-frequency control, voltage-reactive power control and fault analysis. Integration of Renewable resources (including wind and solar) within the grid will be also discussed, which leads to the introduction of of distributed generation, microgrids and smart grids.

Module Content: • Introduction: Synchronous generators, Per Unit calculations.

- Symmetrical component and faults calculation.
- Protection systems in a power network.
- Stability studies.
- Voltage and frequency control.
- Integration of renewable generation, challenges and opportunities.

Intended Learning Outcomes: On successful completion of this module students will be expected, at threshold level, to be able to:

- Evaluate rotor angle stability using Swing Equation and Equal Area Criterion, which demonstrates a comprehensive knowledge and understanding of power system stability (assessed by exam).
- Design the control system for a current-controlled voltage source converter in different operating modes, which demonstrates awareness of developing technologies in renewable energy control (assessed by exam).
- Evaluate the performance of different substation layouts, which demonstrates understanding of engineering principles (assessed by exam).
- Propose appropriate protection system for different components and applications in power systems, which demonstrates the ability to identify, classify and describe the performance of different protection relays (assessed by exam).
- Evaluate and explain different methods of controlling/supporting voltage and frequency, and apply economic dispatch criterion in a power systems, which demonstrate knowledge and understanding of commercial and economic context of engineering processes.

Assessment: Examination (100%)

Assessment Description:

Examination (100%)

Moderation approach to main assessment: Universal second marking as check or audit

Assessment Feedback: Feedback will be given to the class after the examinations on the standard College Examination Summary Sheet.

Failure Redemption: If rules allow - standard University provisions with marks capped. Any re-examination of this module will be by written examination only (100%).

Additional Notes: As the University continues to respond to the developing Covid-19 pandemic module information may be subject to change to ensure students receive the best learning experience possible. We will make every effort to engage with students where changes are necessary and any changes will be communicated to students, as soon as possible. Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

- AVAILABLE TO visiting and exchange students.
- This module makes full use of the e-learning support tools provided by Canvas.
- The College of Engineering has a ZERO TOLERANCE penalty policy for late submission of coursework and continuous assessment.

EGLM06 Energy and Power Electronics Laboratory

Credits: 10

Pre-requisite Modules: Co-requisite Modules:

Lecturer(s): Dr Z Zhou

Format: On-demand 22 hours of online simulation labs

Directed private study 78 hours

Contact Hours will be delivered through a blend of live activities online and may include, for example, lectures, simulation classes, seminars and Academic Mentoring sessions.

Delivery Method: All Programmes will employ a blended approach to delivery using the Canvas Digital Learning Platform for live and self-directed online activity.

Assessment: 100% Continuous Assessment.

Laboratory work: 22 hours Directed private study: 78 hours

Module Aims: The module covers main aspects of Engineering Applications for the MSc students in electrical & electronics engineering. It includes preparation, performance and reporting on a structured series of simulation supporting the taught modules at this level and gives the simulation experience of power electronics converters, electrical machine and photovoltaic (PV) system operation, practice in using simulation software and IT packages to assist with the laboratory work and report writing.

Module Content:

- Simulation of PV array characteristics.
- Simulation of PV power generation system.
- Simulation of induction machine operation including various starting techniques.

Work includes:

- The preparation for the simulation labs.
- The use of software tools for system design and simulation.
- Construction of simulation circuits for a PV system and electrical machine.
- Information recording and analysis.
- Practice in using IT packages to assist with report writing and presentations.

Intended Learning Outcomes:

After completing this module you should be able to demonstrate:

- The simulation skills of electrical machine operation.
- The simulation skills of power electronics technique for photovoltaic power generation systems.
- The simulation skills of modern control theory for practical applications of electrical systems.

Assessment: Assignment 1 (60%)

Assignment 2 (40%)

Assessment Description:

Students need to submit a simulation lab report for each continuous assignment. The first continuous assignment (A1) is worth 60%, the second assignment (A2) is worth 40%.

This module is delivered by a combination of A1 and A2. In order for the A2 marks to count, you must achieve at least 40% A1. If you achieve less than 40% in A1, then the module mark will be just the mark from A1.

Moderation approach to main assessment: Universal second marking as check or audit

Assessment Feedback: Students will receive feedback from the module lecturer and demonstrator during the designate feedback session.

Failure Redemption: Failure redemption of this module will be by resit continuous assignment in August (100%). The failure redemption is only available to students who record sufficient engagement (80% lab attendance, attendance at scheduled online or lab events).

Additional Notes: As the University continues to respond to the developing Covid-19 pandemic module information may be subject to change to ensure students receive the best learning experience possible. We will make every effort to engage with students where changes are necessary and any changes will be communicated to students, as soon as possible. Delivery of both teaching and assessment will be blended including live and self-directed activities online using ZOOM.

AVAILABLE TO a limited number of Visiting and Exchange Students due to number restriction.

LABORATORY (simulation) CLASSES ARE COMPULSORY. Students must have at least 80% attendance at laboratory classes in order to be allowed to be assessed for the module.

The College of Engineering has a ZERO TOLERANCE penalty policy for late submission of all coursework and continuous assessment.

EGNM04 Nanoscale Structures and Devices

Credits: 10

Pre-requisite Modules:

Co-requisite Modules:

Lecturer(s): Dr TGG Maffeis, Prof KS Teng

Format: Lectures/on demand activities: 20 hours;

Laboratory: 2 hours;

Directed private study: 40 hours preparation for assessment: 40 hours

Contact Hours will be delivered through a blend of live activities online and on-campus, and may include, for example, lectures, seminars, practical sessions and Academic Mentoring sessions.

Delivery Method: All Programmes will employ a blended approach to delivery using the Canvas Digital Learning Platform for live and self-directed online activity, with live and self-directed on-campus activities each week. Students may also have the opportunity to engage with online versions of sessions delivered on-campus

Lectures/Laboratory/Example classes/Discussions

Module Aims: This module explores the novel properties of semiconductors and metals when their dimension reach the nanometre scale. The module reviews various types of nanostructures (nanowires, quantum dots, graphene, carbon nanotubes) focusing on fabrication techniques, properties and practical applications. It also details the challenges faced by the Silicon industry beyond Moore's law and highlights possible replacements for CMOS technology.

Module Content:

- Micro and Nano-electronics Top-down technology examining scaling issues, lithography and beyond. Real devices: transistors and others (FinFet, latest node). Next generation devices (Single electron transistor, nanowires, quantum computing)
- Bottom-up Technology Atomic manipulation and Quantum Corrals. Growth techniques for nanostructures (chemical and physical vapour deposition, molecular beam epitaxy) Nanolithography and next generation devices.
- Nanoscale Structures Nanowires, Quantum Dots, Bucky balls and Carbon Nanotubes: their physical and electronic properties, fabrication and applications.

Intended Learning Outcomes: Technical outcomes:

- Demonstrate an advanced knowledge of nanoscale objects and devices and their novel properties compared to bulk counterparts
- Critically describe the top-down and bottom-up approaches for the fabrication of nanostructures, their advantages, applications and limitations.
- Explains the physical implications of nanoscale objects for real and next-generation devices.
- Analyse and critically review information resources (journals, internet, talks, etc.).
- Understand physical, chemical and biological concepts and how they apply to nanotechnology.
- Conduct, analyse and document experiments with minimum help.
- Apply statistical analysis to experimental data.
- Research and present a chosen topic professionally.
- Evaluate specific experimental results or research papers and place them in a wider context.

Accreditation outcomes (AHEP):

- A comprehensive understanding of the relevant scientific principles of the specialisation. (SM1fl)
- A critical awareness of current problems and/or new insights most of which is at, or informed by, the forefront of the specialisation. (SM2fl)
- Understanding of concepts relevant to the discipline, some from outside engineering, and the ability to evaluate them critically and to apply them effectively, including in engineering projects. (SM3fl)
- Ability to use fundamental knowledge to investigate new and emerging technologies. (EA2fl)
- Ability to collect and analyse research data and to use appropriate engineering analysis tools in tackling unfamiliar problems, such as those with uncertain or incomplete data or specifications, by the appropriate innovation, use or adaptation of engineering analytical methods. (EA3fl)
- Advanced level knowledge and understanding of a wide range of engineering materials and components. (EP1fl)
- A thorough understanding of current practice and its limitations, and some appreciation of likely new developments. (EP2fl)

Assessment: Examination 1 (60%)

Report (25%) Presentation (15%)

Assessment Description:

Exam: a mix of numerical problems and open ended questions

Lab report: written in the form of a publication.

Presentation: 10 minutes and 5 minutes of questions based on a selected publication.

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

Moderation approach to main assessment: Universal second marking as check or audit

Assessment Feedback: Feedback provided on the feedback form

Failure Redemption: If rules allow a 100% supplementary examination with marks capped.

Additional Notes: As the University continues to respond to the developing Covid-19 pandemic module information may be subject to change to ensure students receive the best learning experience possible. We will make every effort to engage with students where changes are necessary and any changes will be communicated to students, as soon as possible. Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

- Failure to sit an examination or submit work by the specified date will result in a mark of 0% being recorded.
- Practical work: Growth of nanostructures; nanostructures studied by SEM.
- All lectures and course material will be provided on Canvas.
- Not available to Visiting and Exchange students due to lab activity.
- This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

EGNM09 Micro and Nano Electro-Mechanical Systems

Credits: 10

Pre-requisite Modules: Co-requisite Modules:

Lecturer(s): Prof L Li

Format: Lectures: 20 hours

Example Classes: 2 hours Directed Private Study: 78 hours

Contact Hours will be delivered through a blend of live activities online and on-campus, and may include, for example, lectures, seminars, practical sessions and Academic Mentoring sessions.

Delivery Method: All Programmes will employ a blended approach to delivery using the Canvas Digital Learning Platform for live and self-directed online activity, with live and self-directed on-campus activities each week. Students may also have the opportunity to engage with online versions of sessions delivered on-campus

Lectures and end of semester examination.

Module Aims: Micro and Nano Electro-Mechanical Systems (MEMS/NEMS) are technology that integrates electrical and mechanical components and they offer many novel and diverse applications ranging from display technologies to sensor systems.

Module Content: Introduction to MEMS and NEMS

Modelling the Dynamics of MEMS/NEMS

MEMS/NEMS Sensors and Actuators

Piezoelectric, electrostatic, and thermoelectric

Fabrication of MEMS/NEMS

Optical and RF MEMS

Intended Learning Outcomes: Technical Outcomes:

After completing this module you should be able to demonstrate:

- Ability to analyse the dynamic motion of micro/nano resonators based on mass-spring-damper model.
- Ability to use mathematical tools (such as Matlab) to simulate key parameters of micro/nanoelectromechanical systems.
- Ability to analyse how the physical and electronic properties change with dimension and how this affects devices, and comprehensive understanding of why the devices are realized in micro/nano scales.
- •Ability to model the electronic/physical/mechanical properties of the piezoelectric crystals, electrostatic and thermoelectric devices, and to apply these devices in optical, radio frequency, and power generation systems.
- Ability to conduct multi-physics modelling encompassing disciplines such as electronics, physics, and mechanics.
- Ability to design microfabrication processes for target micro/nanoelectromechanical devices.

Accreditation Outcomes (AHEP)

- A comprehensive understanding of the relevant scientific principles of the specialisation (SM1fl)
- Knowledge, understanding and skills to work with information that may be incomplete or uncertain, quantify the effect of this on the design and, where appropriate, use theory or experimental research to mitigate deficiencies (D1fl)

- Ability to use fundamental knowledge to investigate new and emerging technologies (EA2fl)

Assessment: Examination 1 (80%) Assignment 1 (20%)

Assessment Description: 80% End term Examination

20% Mid term assignment

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

Moderation approach to main assessment: Universal second marking as check or audit

Assessment Feedback: Students receive feedback from formal examination via standard College proforma.

Failure Redemption: If rules allow - standard university provision of Supplementary examination, with marks capped at 40% and by written examination only (100%).

Additional Notes: As the University continues to respond to the developing Covid-19 pandemic module information may be subject to change to ensure students receive the best learning experience possible. We will make every effort to engage with students where changes are necessary and any changes will be communicated to students, as soon as possible. Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

AT-M76 Radio and Optical Wireless Communications

Credits: 10 Session: 2022/23 September-January

Pre-requisite Modules:

Co-requisite Modules: AT-M51; AT-M56

Lecturer(s): Prof L Li, Prof A Mehta

Format: Lectures 20 hours; Directed private study 80 hours

Contact Hours will be delivered through a blend of live activities online and on-campus, and may include, for example, lectures, seminars, practical sessions and Academic Mentoring sessions.

Delivery Method: All Programmes will employ a blended approach to delivery using the Canvas Digital Learning Platform for live and self-directed online activity, with live and self-directed on-campus activities each week. Students may also have the opportunity to engage with online versions of sessions delivered on-campus

Examination 90% and continuous assessment 10%

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

Module Aims: The module reviews linear modulations, channel models for radio wave propagation in wireless communications, and the receiver design principles. The transmission diversity techniques are also included. In the second part, the techniques used in optical wireless communications are explained.

Module Content:

- Point to point wireless communications and linear modulations.
- Propagation models in radio frequency and optical wireless communications.
- Receiver design principles.
- Diversity techniques.
- Performance evaluation.
- Optical wireless techniques.

Intended Learning Outcomes: Technical Outcomes

After completing the module you should be able to:

- Understand transmitter and receiver structure for linear modulations.
- Understand models of radio wave propagation, and how to design the corresponding receiver.
- Understand how to analyze point to point wireless links.
- Understand the principles of optical free-space propagation.
- Understand the components and the design of optical wireless links.

Accreditation Outcomes (AHEP)

- -A comprehensive understanding of the relevant scientific principles of the specialisation (Sm1fl)
- Knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations (D7m/D2fl)

Assessment: Examination (90%)

Coursework 1 (10%)

Assessment Description:

Coursework 1- 10% students will be divided in week 6 into three groups to survey one of the following topics:

"Use of Optical Wireless as backbone in case of Natural Catastrophes"

"Use of drone-based optical wireless to cover rural areas"

"Optical Satellite Links"

By week 9 each group will present their survey organizing a Powerpoint presentation of 15 minutes made by all member of the group.

Examination: 90% - Answer 3 out of 4 questions

Resit 100% Exam (coursework mark will not be used)

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

Moderation approach to main assessment: Universal second marking as check or audit

Assessment Feedback: During dedicated lecture, via email and during office hours.

Failure Redemption:

If rules allow - standard University provisions with marks capped. Any re-examination of this module will be by written examination only (100%).

Additional Notes: Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

- AVAILABLE TO Visiting and Exchange students.
- The College of Engineering has a ZERO TOLERANCE penalty policy for late submission of all coursework and continuous assessment.
- Notes, worked examples and past papers for this module can be found on Canvas.
- This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

AT-M80 Optical Fibre Communications

Credits: 10 Session: 2022/23 September-January

Pre-requisite Modules: Co-requisite Modules:

Lecturer(s): Dr KM Ennser

Format: On-demand lecture materials: 20 hours;

Live Discussion & Examples Classes: 10 hours;

Directed Private Study: 70 hours

Contact Hours will be delivered through a blend of live activities online and on-campus, and may include, for example, lectures, seminars, practical sessions and Academic Mentoring sessions.

Delivery Method: All Programmes will employ a blended approach to delivery using the Canvas Digital Learning Platform for live and self-directed online activity, with live and self-directed on-campus activities each week. Students may also have the opportunity to engage with online versions of sessions delivered on-campus

A blended learning approach to class contact will be used in which the key concepts and readings will be introduced and understanding tested using online quizzes.

The live classes will focus on discussions and examples classes (one hour per week). Live teaching sessions will be reinforced by making worked solutions available after class.

Each week will require around 2-3 hours of student engagement to review all the on-demand materials, complete the formative assessments and engage in class discussions.

Module Aims: This module is devoted to the technology underlying optical fibre communication systems. It covers the fundamental properties of optical fibres and key components, and the principles of operation of systems including WDM based high capacity transport networks. The network architecture designs and performance metrics are examined. Modern topics are introduced such as advanced modulation formats, coherent communications, spectrum efficiency and Shannon limit capacity.

Module Content:

- Introduction to optical fibre technology
- Enabling technologies: Laser sources and filters, couplers, isolators, circulators, optical multiplexers, optical amplifiers, dispersion compensators.
- Transmission systems: crosstalk, dispersion, fibre nonlinearities, noise and system sensitivity, link power budget, repeater spacing.
- Wavelength division multiplexing (WDM) systems and key components.
- WDM amplifier and system design, coherent detection and polarisation multiplexing.

Intended Learning Outcomes: After completing this module you should be able to:

- * Understand the fundamentals of optical fibre technology and their implications in optical fibre communications
- * Appraise key components and their technologies that enable modern optical networks
- * Design optical transmission systems for different architecture scenarios
- * Evaluate transmission performance and apply quantitative and qualitative metrics

The following AHEP 3 Programme Learning outcomes at Partial CEng (Further learning) (fl) and CEng (m) are partially addressed at a threshold level by this module:

- * Ability to use fundamental knowledge to investigate new and emerging technologies including optical communications WDM channels digital optical signals and systems, optical propagation and waveguides (fibres), modulation and coding techniques of optical signal including phase and multilevel, organisation and operation of optical communications networks, optical network architectures and noise in amplified optical communications systems. (EA5m, EA2fl assessed by coursework and exam)
- *Ability to apply a systematic approach to the analysis and design of optical communication links taking into account technical constraints such as crosstalk, dispersion, fibre nonlinearities and noises. (EA6m, EA3fl, assessed by coursework and exam)
- * Ability to apply a systematic approach to the analysis and design of optical communication links taking into account health, safety and environmental issues, the cost versus performance trade-off, International Telecommunications Union (ITU) standards and social-economical issues. (D2m assessed by coursework and exam)
- * Ability to apply several quantitative and qualitative metrics (eg, eye-diagram, Q factor, bit error rate, optical signalto-noise ratio, amplifier noise figure) in the analysis of network performance and design. (D3m, D1fl, assessed by coursework and exam)
- *Appreciation of technology choices based on cost, capacity and demand in the context of optical fibre telecommunication. Understanding the different requirements in local access, metropolitan area, terrestrial high capacity networks and submarine links. (ET2m, ET2fl, assessed by coursework and exam).
- *Knowledge of relevant legal and contractual issues (EP5m)
- * A thorough understanding of current practice in the key components and their configurations in high speed optical (WDM) systems including different fibre types, amplifiers, multiplexers and compensators. (EP9m, EP2fl, assessed by coursework and exam)
- *Cost and commercial constraints on system design, e.g. why amplifier spacing is maximised, access network architecture. Commercial long-distance system design and installation are presented and discussed the requirements and constraints, such as the use of solar panels to feed equipment in a desert area, positioning of the nodes due to geographic limitations (EP10m, EP2fl, assessed by coursework and exam)

Assessment: Exam - open book (70%)

> Coursework 1 (5%) Coursework 2 (5%) Coursework 3 (5%) Coursework 4 (5%)

Group Work - Coursework (10%)

Assessment Description: The module is assessed by an exam (70%), four pieces of coursework (20%) and a group

design case study (10%). The four pieces of coursework are a mix of written assignments and online quizzes.

Zero tolerance for a late submission.

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

Moderation approach to main assessment: Universal second marking as check or audit

Assessment Feedback: The students receive feedback on the coursework during lectures and via Canvas.

Failure Redemption: If rules allow - standard University provision with marks capped. Failure Redemption will be by Examination.

Additional Notes: Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

The College of Engineering has a ZERO TOLERANCE penalty policy for late submission of coursework and continuous assessment.

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

EG-M125 Advanced Optical Materials and Devices

Credits: 10 Session: 2022/23 September-January

Pre-requisite Modules: Co-requisite Modules:

Lecturer(s): Dr WC Tsoi

Format:

11 weeks, each week 2 hours lecture (+demonstration if possible) + 1 hour example class (+Lab tour if

possible)

Both will be online, with a possibility of limited on-site sessions.

Contact Hours will be delivered through a blend of live activities online and on-campus, and may include, for example, lectures, seminars, practical sessions and Academic Mentoring sessions.

Delivery Method: All Programmes will employ a blended approach to delivery using the Canvas Digital Learning Platform for live and self-directed online activity, with live and self-directed on-campus activities each week. Students may also have the opportunity to engage with online versions of sessions delivered on-campus

Lectures, example classes, experimental demonstrations if possible, lab tours if possible.

Module Aims: This module covers advanced printable semiconducting materials for optical devices, with particular focus on their applications for new type of photovoltaic cells and light emitting diodes, and the working principles and engineering of the devices.

Module Content: • Introduction to semiconductors

- Introduction to organic semiconductors
- Introduction to perovskite semiconductors
- Organic and perovskite photovoltaic devices
- Organic and perovskite light emitting diodes
- Light absorption and excitons
- Charge separation and recombination
- Charge transport and injection
- Electroluminescence and outcoupling

Intended Learning Outcomes: After completing this module, students should be able to:

- Define what are organic and perovskite semiconductors
- Identify and describe their optical and electrical properties
- Understand their applications, working principles and engineering for photovoltaic devices and light emitting diodes
- Know the facilities to fabricate and test photovoltaic devices and light emitting diodes

Accreditation Outcomes (AHEP)

- Awareness of developing technologies related to own specialisation (SM4m / SM2fl)
- A comprehensive knowledge and understanding of mathematical and computational models relevant to the engineering discipline, and an appreciation of their limitations (SM5m)
- Ability to use fundamental knowledge to investigate new and emerging technologies (EA5m / EA2fl)

Assessment: Assignment 1 (15%)

Assignment 2 (10%) Examination (75%)

Assessment Description: 15% Assignment one: online multiple choices test

10% Assignment two: online multiple choices test

75% Exam: Open book

Moderation approach to main assessment: Universal second marking as check or audit

Assessment Feedback: The assignments will be marked by the Canvas system immediately after the submissions. The statistics of the performance and the solutions to the questions will be provided shortly after each assignment. Furthermore, oral clarification of issues is available at student; is request.

Feedback on the written examination will be in a standard format on the College of Engineering Intranet. Information provided includes average mark, maximum and minimum marks, for the examination as a whole and for individual questions. Besides, the common mistakes for each question will be provided, with suggestions on how to improve.

Failure Redemption: Resit in August: This supplementary examination is based on a written examination only, which is worth 100% of the total module mark.

Additional Notes: Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

Available for Visiting and Exchange Students

PENALTY: ZERO TOLERANCE FOR LATE SUBMISSION.

EG-M85 Strategic Project Planning

Credits: 10 Session: 2022/23 September-January

Pre-requisite Modules: Co-requisite Modules: Lecturer(s): Dr K Wada

Format:

Lectures and Case Studies 13-15 hours; Project Monitoring 7 hours (project briefing, project update and presentations); Private Study 78-80 hours (reading, group work, exam preparation)

Contact Hours will be delivered through a blend of live activities online and on-campus, and may include, for example, lectures, seminars, practical sessions and Academic Mentoring sessions.

Delivery Method: All Programmes will employ a blended approach to delivery using the Canvas Digital Learning Platform for live and self-directed online activity, with live and self-directed on-campus activities each week. Students may also have the opportunity to engage with online versions of sessions delivered on-campus

Series of lectures and combination of case study, project briefing/update and group work sessions.

Practical group work sessions (50%) will be arranged in order to grasp the project management techniques and effectively apply them to form a 'High Performance Team'. This coursework assessment (CA) is comprised of a group project and group presentation.

Examination - Open Book (50%) at the end of the semester.

Module Aims: This module has been accredited by the professional body - the Association for Project Management (APM). At the end of this course students will be able to recognise and define the key characteristics and components of a project, understand the advantages/disadvantages associated with the management of both small and large projects, and have an appreciation of the strategic tools and techniques available to enable effective or efficient project management leading to a 'High Performance Team'. The acquired skills will be reinforced by the completion of a group project to produce an initial feasibility report (e.g. a business case/project management plan document) for a major regional project.

Module Content: 1) Lectures: series of lectures will be conducted and/or recorded to cover the fundamentals of strategy and project management. Various tools and techniques used by a project manager at large in the industry will be demonstrated with figures/diagrams/tables/videos and further elaborated through relevant examples. Intended coverage of syllabus (as recommended by APM):

- 1. Structure of organisations and projects
- 2. Project life cycle
- 3. Project contexts and environments
- 4. Governance and structured methodologies
- 5. Communication
- 6. Leadership and teamwork
- 7. Planning for success
- 8. Scope management
- 9. Schedule and resource management
- 10. Procurement
- 11. Project risk management and issue management
- 12. Project quality management
- 2) Case study/Webinar: internal/external guest speaker(s) will be invited to give talks on some of the topics on project management, an hour session each.
- 3) Project briefing and update: information on CA (including but not limited to project titles, group allocation, project manager/assistant manager nominations, marking scheme, report format, and presentation arrangement) will be announced during these sessions. Frequently asked questions (FAQs) will be answered in the meantime.
- 4) Group work and Presentation: dedicated hours will be provided for the group work (i.e. dealing with CA task). No lectures during these sessions. With regard to CA, dedicated time slots will be arranged for the final presentation.

Intended Learning Outcomes: Technical Outcomes

On successful completion of this module students will be expected, at threshold level, to be able to:

- Demonstrate a comprehensive knowledge and understanding of project management the nature of both small and large projects, the issues and constraints such as environmental and sustainability limitations; ethical, legal, health, safety, security and risk issues; the tools available to manage the project and critically evaluate them and apply the tools effectively in projects to communicate the outputs to technical and non-technical audiences. (Assessed by Coursework report, Presentation and Exam; or Resit Exam)
- Use fundamental knowledge to investigate new and emerging technologies via application of strategy such as PESTLE analysis, SWOT analysis and Porter's generic strategies as a means not only to understand the key drivers for business success pertaining to the commercial, economic and social context of engineering processes, but also to identify, compare and evaluate competitive advantage, cost leadership, differentiated product/services, or niche markets. (Assessed by Coursework report, Presentation and Exam; or Resit Exam)
- Have awareness of relevant legal and contractual issues, as well as quality issues and their application to continuous improvement (i.e. quality planning, quality assurance, quality control and continuous improvement). This requires the demonstration of knowledge, interpretation and application of project management theory and practice. (Assessed by Coursework report, Presentation and Exam; or Resit Exam)
- Demonstrate a comprehensive knowledge and understanding of the role of a project manager an ability to exercise initiative and personal responsibility: i) understand the team members' characteristic and their needs; ii) delegate project activities and find ways to resolve conflicts through effective communication to build a 'High Performance Team'; and iii) understand and evaluate business, customer and user needs. (Assessed by Coursework report, Presentation and/or Resit Exam)

Accreditation Outcomes (AHEP)

- Investigate and define the problem, identifying any constraints including environmental and sustainability limitations; ethical, health, safety, security and risk issues; intellectual property; codes of practice and standards (D2)
- Communicate their work to technical and non-technical audiences (D6)
- Awareness that engineers need to take account of the commercial and social contexts in which they operate (ET2fl)
- Knowledge and understanding of management and business practices, their limitations, and how these may be applied in the context of the particular specialisation (ET3fl)
- Awareness that engineering activities should promote sustainable development and ability to apply quantitative techniques where appropriate (ET4fl)
- A thorough understanding of current practice and its limitations, and some appreciation of likely new developments (EP2fl)
- Ability to apply engineering techniques, taking account of a range of commercial and industrial constraints (EP3fl)
- Understanding of different roles within an engineering team and the ability to exercise initiative and personal responsibility, which may be as a team member or leader (EP4fl)

Assessment: Examination 1 (50%)

Coursework 1 (50%)

Assessment Description: Coursework 1 is a group project allocated during the lecture series. Examination 1 is a standard closed book examination.

The pass mark for a module at Year 4/M is 50%. In addition to this, students must also achieve at least 40% in both components to pass this module.

If you do not meet the component level requirements for the module you will receive a QF outcome. This means that you will be required to repeat the failed component(s), even if your module mark is above 50%.

Moderation approach to main assessment: Universal second marking as check or audit

Assessment Feedback: Informal feedback is given during lectures, project briefing/update sessions, group presentations, and at group work meetings. Formal feedback is given via standard College of Engineering feedback protocols.

Failure Redemption: Failure Redemption of this module will be by repeating an equivalent coursework and/or exam to any component in which a pass mark was not achieved.

Marks achieved in assessment component passed during the first attempt will automatically be transferred to the equivalent component in the resit.

No opportunity to resit the passed component.

Additional Notes: Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

Penalty for late submission of work: ZERO TOLERANCE.

Available to visiting and exchange students wishing to enhance project management skills.

The pass mark for a module at Year 4/M is 50%. In addition to this, students must also achieve at least 40% in both components to pass this module.

Office hours, lecture notes and other teaching materials and notifications will be posted on Canvas.

EGIM16 Communication Skills for Research Engineers

Credits: 10 Session: 2022/23 September-January

Pre-requisite Modules:

Co-requisite Modules:

Lecturer(s): Dr SA Rolland, Dr T Lake

Format: Lectures (10h), Exercises (20h), Reading / Private Study (30h), Preparation for Assessment (40h)

Delivery Method: The module will be delivered on campus and partially online.

Module Aims: Communication at a research level differs from that at the undergraduate level in that it is usually driven by an output or result rather than the requirement to show knowledge or understanding. The skill of a good communicator at research level lies in efficiently and rigorously conveying the ideas behind the theory and proof of the research output. Verbal, written, visual and group communication will be explored through a series of lectures and formative exercises.

Module Content:

Written Communication: [6 hours]

- The usual layout of reports, theses, journal & conference papers.
- How to write a good abstract for a research output.
- What should be in the introduction
- Contents of the main body of a research output.
- Effective conclusions
- Writing style
- Cross-referencing, captions, references
- Critical review of self and others
- Design concepts for research posters

Oral Communication: [6 hours]

- The usual layout of a research presentation
- Slide design for a research presentation
- Delivery of a presentation, do's and don'ts
- Maintaining the audience's interest.

Other topics: [3 hours]

- Attending & chairing meetings
- Conferences submissions and attendance
- Submission of papers and peer review.

Intended Learning Outcomes: Technical Outcomes:

By the end of this module the student will be able to:

- Write a paper or equivalent employing the structure and rigour required at research level (assessed by assignments 1 and 4)
- Efficiently communicate the concepts associated with complex ideas (assessed by the first written assignment and the oral presentation)
- Critically evaluate a written output (assessed within the second assessment component)
- Verbally present a complex idea using the presentation structure, slide content and delivery techniques expected of a research engineer (assessed through the oral presentation)
- Demonstrate an awareness of the other modes of communication of ideas at a research level such as posters and group discussions (assessed in the second assessment component)

Accreditation Outcomes (AHEP)

- Awareness of the need for a high level of professional and ethical conduct in engineering (EL8M / ET1fl)
- Awareness that engineers need to take account of the commercial and social contexts in which they operate (EL9M / ET2fl)
- Awareness that engineering activities should promote sustainable development and ability to apply quantitative techniques where appropriate (EL11M / ET4fl)
- A thorough understanding of current practice and its limitations, and some appreciation of likely new developments (P9M / EP2fl)

Assessment: Assignment 1 (10%)

Assignment 2 (10%) Oral Examination (40%)

Writing (40%)

Assessment Description:

The first sit assessment will consist of 4 assignments.

The first assessment component will be a short written piece, up to two pages long, which will test the students understanding of the concepts with respect to the written work and to allow feedback to the participants in the module prior to the final assessment. This is an individual piece of coursework.

The second component will feature a small number of tasks which are aimed to evaluate the students understanding of the other ideas, beyond the written word and oral presentations, which are covered in the module. This will include the critical review of a written output. Other possible tasks include group meetings and the creation of a poster. The coursework may be done individually or in groups, this will be confirmed at the time of setting the work.

The oral examination will involve the students presenting an example of the work they have undertaken in the past, typically a project, through an oral presentation. The target duration of the oral presentation will usually be between 8 to 10 minutes. The exact duration will be specified in the assignment descriptor. This is an individual piece of coursework.

The final, fourth, component will require the student to write a paper or equivalent. This paper will be between four to five pages in length and will be written to a format described in the assignment descriptor. This is an individual piece of coursework.

The pass mark for a module at Level 4/M is 50%. In addition to this Students must achieve at least 40% in the Oral Examination AND 40% in the Writing assessment to pass the module.

The reassessment will consist of 2 assignments, details of which are provided in a later section.

Moderation approach to main assessment: Second marking as sampling or moderation

Assessment Feedback: CANVAS will be used to provide individual feedback to the students on all the components that contribute to the final mark. For the first assessment component a class feedback document is also generally included on CANVAS.

As part of the practical sessions the students will receive verbal feedback on their performance. These sessions do not contribute to the final mark.

Failure Redemption: Candidates shall be given one opportunity to redeem a failure in the module during the summer supplementary period.

All components are redeemable individually in the event of failure across the module.

In addition, the 40 % oral and written assignments of the first must be passed individually to pass the module, and will have to be redeemed even if a pass mark is achieved for the module overall on first sit. A pass mark on both main assessment components will be required to pass the module.

Additional Notes: Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

All lectures and course material will be provided on CANVAS.

The pass mark for a module at Level 4/M is 50%. In addition to this Students must achieve at least 40% in the Oral Examination AND 40% in the Writing assessment to pass the module.

The College of Engineering has a ZERO TOLERANCE penalty policy for late submission of all coursework and continuous

assessment.

EGLM00 Power Semiconductor Devices

Credits: 10 Session: 2022/23 September-January

Pre-requisite Modules: Co-requisite Modules:

Lecturer(s): Prof MR Jennings

Format: Formal contact hours: 20 hours

Directed private study: 80 hours

Delivery Method: Module exam 100%

Module Aims: Power semiconductor technology is a key enabling technology leading to more efficient power conversion. Historically, the development of electronic power devices can be traced to the early 1950s when thyristors capable of operating at high current and voltages were introduced. In the years to come, the most important development has been the introduction of power devices with high-input-impedance gate such as VDMOSFETs and IGBTs. This allowed a large reduction in system size and cost, leading to many new application for power electronics in domestic appliances and automotive and aviation electronics, for example.

Module Content:

- Power electronics and energy management in the New Millennium.
- Semiconductor fundamentals.
- Power diodes
- Bipolar devices.
- Power MOSFET.
- Insulated Gate Bipolar Transistors (IGBT).
- Device switching.
- Device losses.
- Device fabrication of practical devices.
- RESURF and super-junction devices.
- Power electronics applications.
- Advanced concepts, lifetime control, junction termination, high voltage (smart) power ICs.
- Wide bandgap semiconductors and devices. An insight into silicon carbide and gallium nitride, its advantages and potential (high voltage, high frequency and high temperature devices) and its problems (cost, immaturity, processing issues).
- Packaging and reliability of power semiconductor devices.

Intended Learning Outcomes: By the end of the module the student should be able to...

- Apply advanced concepts through the use of device physics in the context of device design (forward, reverse characteristics and switching) for use within a power converter.
- Design a power semiconductor device for a specific application.
- Conduct complex packaging and reliability analysis of power semiconductor devices.
- Analyse systematically new materials for power semiconductor devices; silicon carbide and gallium nitride.

Accreditation Outcomes (AHEP)

MEng

- Awareness of developing technologies related to own specialisation (SM4m)
- A comprehensive knowledge and understanding of mathematical and computational models relevant to the engineering discipline, and an appreciation of their limitations (SM5m)
- Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques (EA2m)
- Ability to apply quantitative and computational methods, using alternative approaches and understanding their limitations, in order to solve engineering problems and to implement appropriate action (EA3m)
- Demonstrate wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations (D7m)
- Demonstrate the ability to generate an innovative design for products, systems, components or processes to fulfil new needs (D8m)
- Understanding of the requirement for engineering activities to promote sustainable development and ability to apply quantitative techniques where appropriate (ET4m)
- A thorough understanding of current practice and its limitations, and some appreciation of likely new developments (EP9ml)

MSc

- A critical awareness of current problems and/or new insights most of which is at, or informed by, the forefront of the specialisation (SM2fl)
- Understanding of concepts relevant to the discipline, some from outside engineering, and the ability to evaluate them critically and to apply them effectively, including in Engineering projects (SM3fl)
- Ability both to apply appropriate engineering analysis methods for solving complex problems in engineering and to assess their limitations (EA1fl)
- Knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations (D2fl)
- Ability to generate an innovative design for products, systems, components or processes to fulfil new needs (D3fl)
- Awareness that engineering activities should promote sustainable development and ability to apply quantitative techniques where appropriate (ET4fl)
- A thorough understanding of current practice and its limitations, and some appreciation of likely new developments (EP2fl)

Assessment: Examination (100%)

Assessment Description: Examination - 2 hours

Moderation approach to main assessment: Universal second marking as check or audit

Assessment Feedback: An exam feedback form will be produced noting common errors and good practice. This will be uploaded to the College of Engineering Community page.

Failure Redemption: Resit examination in August worth 100%.

Additional Notes: Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

EGLM02 Advanced Power Electronics and Drives

Credits: 10 Session: 2022/23 September-January

Pre-requisite Modules: Co-requisite Modules: Lecturer(s): Dr Z Zhou

Format: On demand online teaching: 16 hours

On demand example and coursework support 6 hours

Directed private study: 78 hours

Contact Hours will be delivered through a blend of live activities online and on-campus, and may include, for example, lectures, seminars, practical sessions and Academic Mentoring sessions.

Delivery Method: All Programmes will employ a blended approach to delivery using the Canvas Digital Learning Platform for live and self-directed online activity, with live and self-directed on-campus activities each week. Students may also have the opportunity to engage with online versions of sessions delivered on-campus

This module is delivered by a combination of on-line teaching and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

Assessment: open-book examination (80%) and continuous assessment (20%)

The examination is worth 80% of the module. Answer 4 questions. Each question answered will be worth 25%. The examination topics will be those presented directly in the lectures.

The continuous assessment is worth 20% of the module. This is based on an assignment related to the simulation and analysis of power electronics converter circuits.

Module Aims: This module introduces advanced circuit topologies of power electronics systems for high power applications; the power quality issues will also be addressed by covering passive and active power filters, front end active circuit topologies and harmonic standards. An introduction to modern variable speed AC and DC drives for industrial applications will also be introduced.

Module Content:

- Power converter circuit topologies for renewable energy systems.
- Multi pulse rectifiers.
- Multilevel converters for high power applications.
- Power quality issues at the Point of Common Coupling (PCC).
- Harmonics analysis of converters
- An introduction to grid interface of power electronics converters as well as AC and DC drives

Intended Learning Outcomes:

After completing the module you should be able to:

Design:

- Power electronics circuit topologies for medium power applications including renewable energy systems and electrical AC/DC drives.
- Multi-pulse rectifiers and multi-Level inverters for high power applications as well as design grid interface of power electronics converters.

Analyse:

- Power electronics circuit topologies for medium to high power applications including renewable energy systems and AC/DC drives.
- Harmonic content of systems and compliance to international standards.

Accreditation Outcomes (AHEP)

Ability both to apply appropriate engineering analysis methods for solving complex problems in engineering and to assess their limitations (EA1fl)

Knowledge, understanding and skills to work with information that may be incomplete or uncertain, quantify the effect of this on the design and, where appropriate, use theory or experimental research to mitigate deficiencies (D1fl) Knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations (D2fl)

Advanced level knowledge and understanding of a wide range of engineering materials and components (EP1fl) Awareness of relevant legal requirements governing engineering activities, including personnel, health & safety, contracts, intellectual property rights, product safety and liability issues (ET5p)

Assessment: Examination (80%)

Assignment 1 (20%)

Assessment Description: Due to COVID-19, an alternative assessment has been put in place:

examination (80%) and continuous assessment (20%)

The take-home examination is worth 80% of the module, answer 4 questions. Each question answered will be worth 25%. The examination topics will be those presented directly in the lectures.

The continuous assessment is worth 20% of the module. This is based on an assignment related to the simulation and analysis of power electronics circuits.

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

Moderation approach to main assessment: Universal second marking as check or audit

Assessment Feedback: For the examination, the students will receive an examination feedback summary sheet giving details of the common mistakes that were identified from the assessed exam scripts. It also lists the maximum, minimum and means marks for each question and the number of students attempting it. Feedback specific to each question is additionally provided to aid the students.

For the continuous assessment, the students will receive feedback giving details of the common mistakes that were identified from the submitted coursework. Individually students can make an appointment with the lecturer to receive individual feedback on the assignment if this is required.

Failure Redemption: If rules allow - standard University provisions with marks capped. Any re-examination of this module will be by written examination only (100%).

Additional Notes: Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

AVAILABLE TO visiting and exchange students

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

EGNM01 Probing at the Nanoscale

Credits: 10 Session: 2022/23 September-January

Pre-requisite Modules: Co-requisite Modules:

Lecturer(s): Dr TGG Maffeis, Prof KS Teng, Dr CJ Wright

Format: Lectures: 17 hours

Revision classes: 3 hours Laboratory: 3 hours

Directed private study: 24 hours Personal revision: 50 hours

Contact Hours will be delivered through a blend of live activities online and on-campus, and may include, for example, lectures, seminars, practical sessions and Academic Mentoring sessions.

Delivery Method: All Programmes will employ a blended approach to delivery using the Canvas Digital Learning Platform for live and self-directed online activity, with live and self-directed on-campus activities each week. Students may also have the opportunity to engage with online versions of sessions delivered on-campus

Content delivered by lecture, with supervised lab sessions using scanning probe microscopes requiring a formal laboratory report. Additional data analysis exercises.

Module Aims: This module provides an introduction to the analysis techniques used in nanotechnology, and general surface science, including scanning probe microscopy, electron and diffraction techniques.

Module Content: A general introduction to nanotechnology including the principles of operation and useful applications of a variety of scanning probe microscopy (SPM) techniques, including atomic force microscopy (AFM), scanning tunnelling microscopy (STM), scanning near field optical microscopy (SNOM) and Kelvin probe force microscopy (KPFM). Consideration is given to their appropriate use, data analysis and benefits over conventional microscopy. In addition, novel SPM techniques are explored. Traditional surface science techniques such as x-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES) and secondary ion mass spectroscopy (SIMS) are also covered within this module.

Intended Learning Outcomes: Technical Outcomes:

After completing this module you should be able to:

- Understand the demands and requirements of measuring, characterising and manipulating materials and devices at the nanoscale
- Explain a variety of different analysis tools used at this length scale, including scanning probes, diffraction and electron microscopy techniques.
- Apply the scientific principles behind nanoscale analysis to explain the different analysis techniques used
- To bring together all the above to design an experiment based on the required measurement, cost, accuracy level, device limitations and other requirements, across a range of materials and devices spanning semiconductors, metals, oxides and biological materials.
- To analyse data, extract physical quantities and assess a material or device with potentially incomplete data sets, and to use the literature to supplement missing knowledge.
- To operate and use scanning probe microscopes and be exposed to a wider range of analysis tools within the department, to collect, analyse and interpret data and to undertake a risk assessment exercise prior to using the laboratories
- To critically assess the results in terms of information resources and communicate the importance of the data and results and produce a report based on this information.

Accreditation Outcomes:

l Understanding of concepts relevant to the discipline, some from outside engineering, and the ability to evaluate them critically and to apply them effectively, including in engineering projects. (SM3fl)

Ability both to apply appropriate engineering analysis methods for solving complex problems in engineering and to assess their limitations. (Ea1fl)

Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques. (EA2m)

Knowledge, understanding and skills to work with information that may be incomplete or uncertain, quantify the effect of this on the design and, where appropriate, use theory or experimental research to mitigate deficiencies. (D1fl) Advanced level knowledge and understanding of a wide range of engineering materials and components (EP1fl) Knowledge of characteristics of particular equipment, processes, or products, materials and components; (Ep2M)

Assessment: Examination 1 (80%)

Assignment 1 (20%)

Assessment Description: Examination and Coursework

Written final exam: 80%

Assignment 1: Data Analysis Exercise 20%.

• This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

Moderation approach to main assessment: Second marking as sampling or moderation

Assessment Feedback:

Written final exam: standard university examination feedback forms.

SPM lab report and lab diary: marked assignments returned to students.

STM, STS and AFM data analysis assignments: mark returned to students.

Failure Redemption: If rules allow - standard University provisions with marks capped. Any re-examination of this module will be by written examination only (100%).

Additional Notes: Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

Support material and past exam questions available on Canvas.

This module is assessed by a combination of examination and continual assessment. In order for the continual assessment marks to count, you must achieve at least 40% in the exam component. If you achieve less than 40% in the exam, then the module mark will be just the exam mark.

EGTM71 Power Generation Systems

Credits: 10 Session: 2022/23 September-January

Pre-requisite Modules:

Co-requisite Modules:
Lecturer(s): Dr M Togneri

Format: Lectures and directed private study

Delivery Method: Seminar style lectures which include Q&A, informal discussion and class debate sessions.

Assessment 100% Exam.

Module Aims: This module will provide a detailed introduction to the technology, politics and economics of power generation and its distribution, with an emphasis on the UK network. The main topics include power for transport applications and electricity generation. Case studies of traditional power plant (including coal, oil, gas, nuclear) will be followed by an assessment of current and future low carbon and sustainable technologies (wind, wave, tidal, solar, biomass).

Module Content: Definitions of energy, work and power; energy conversion.

Steam engines, internal combustion and diesel engines; aeroengine variants, low emissions vehicles.

Conventional power generation: Fundamentals and nuclear reactor types.

Hydroelectric, geothermal, wind, solar, biomass, wave, tidal and other energy sources.

UK energy policy.

Changing patterns of energy requirements in the UK and the world; climate change.

Intended Learning Outcomes:

Technical Outcomes

Upon completion of the module the student should be able to demonstrate:

- Comprehensive knowledge of existing power generation systems.
- Awareness of future energy requirements, constraints and emerging generation systems.
- Power generation systems for transport and electricity supply.
- An ability to (thinking skills): Evaluate alternative power systems in light of social, economical and environmental concerns.
- An ability to (key skills): Present a coherent (even personal) view of energy requirements, supply and use on regional, national and international scales.

Accreditation Outcomes (AHEP)

MEng:

- LO1 Investigate and define the problem, identifying any constraints including environmental and sustainability limitations; ethical, health, safety, security and risk issues; intellectual property; codes of practice and standards (D2)
- LO2 Knowledge and understanding of the commercial, economic and social context of engineering processes (EL2)
- LO3 Understanding of the requirement for engineering activities to promote sustainable development and ability to apply quantitative techniques where appropriate (EL4)
- LO4 Understanding of the key drivers for business success, including innovation, calculated commercial risks and customer satisfaction (EL7m)

MSc:

- LO5 Awareness that engineers need to take account of the commercial and social contexts in which they operate (EL9M)
- LO6 Awareness that engineering activities should promote sustainable development and ability to apply quantitative techniques where appropriate (EL11M)

Assessment: Examination 1 (100%)

Assessment Description: Formal Exam. 100%. All learning Outcomes. Questions based on course notes and the "Energy Plans" given in the textbook "Sustainable energy without the hot air".

Moderation approach to main assessment: Universal second marking as check or audit

Assessment Feedback: Standard college exam feedback form.

Failure Redemption: A supplementary examination will form 100% of the module mark

Additional Notes: Delivery of both teaching and assessment will be blended including live and self-directed activities online and on-campus.

The College of Engineering has a ZERO TOLERANCE penalty policy for late submission of all coursework and continuous assessment.

AVAILABLE TO visiting and exchange students.